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Abstract

This study shows that the physical conditions necessary for thermal waves to materialize in Dual-Phase-Lagging

porous media conduction are not attainable in a porous slab subject to a combination of constant heat flux and tem-

perature (Neumann and Dirichlet) boundary conditions. It is demonstrated that the approximate equivalence between

Dual-Phase-Lagging (DuPhlag) heat conduction model and the Fourier heat conduction in porous media subject to

Lack of Local Thermal Equilibrium (La Lotheq) that suggested the possibility of thermal oscillations and resonance

reveals a condition that cannot be fulfilled because of physical constraints.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This is a companion paper to Vadasz [1] as a comple-

mentary study aiming at demonstrating that oscillations

are not possible in Dual-Phase-Lagging heat conduction

in a porous slab subject to a combination of Dirichlet

and Neumann boundary conditions. Repetition will

therefore be kept to a minimum and presented only

for the purpose of consistency and flow of presentation.

The system of governing equations for Fourier con-

duction in porous media subject to Lack of Local Ther-

mal Equilibrium (La Lotheq) was showed by Tzou [2]

to be approximately equivalent to the Dual-Phase-

Lagging (DuPhlag) model of heat conduction. The latter

can produce thermal waves in the form of oscillations. As
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a result the Dual-Phase-Lagging (DuPhlag) model can

yield thermal resonance when periodically forced by a

periodic heat source or a periodic boundary condition

with a forcing frequency that is equal to one of the natural

frequencies of the system. Tzou [2–4] presents applica-

tions of theDuPhlagmodel to awide variety of fields from

ultrafast (femtosecond) pulse-laser heating of metal films,

phonon–electron interaction at nano and micro-scale

heat transfer, temperature pulses in superfluid liquid

helium, thermal lagging in amorphous materials, and

thermal waves under rapidly propagating cracks.

Analytical solutions as well as analysis of the DuPh-

lag heat conduction were presented among others in

excellent papers by Xu and Wang [5], Wang et al. [6],

and Wang and Xu [7] and Antaki [8].

Applications of porous media heat transfer subject to

Lack of Local Thermal Equilibrium (La Lotheq) were

undertaken among others by Nield [9], Minkowycz

et al. [10], Banu and Rees [11], Baytas and Pop [12],
ed.
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Nomenclature

cp,f, cs fluid and solid phase specific heat, respec-

tively (dimensional)

cn dimensionless damping coefficient defined

by Eq. (26)

êx unit vector in the x direction

êy unit vector in the y direction

êz unit vector in the z direction

Foq heat flux related Fourier number, equals

aesq/L
2

FoT temperature gradient related Fourier num-

ber, equals aesT/L
2

Nb Dual-Phase-Lagging bi-harmonic term

dimensionless group, equals be/aeL
2

h integral heat transfer coefficient for the heat

conduction at the solid–fluid interface

(dimensional)

ks effective thermal conductivity of the solid

phase, equals ð1� uÞ~ks (dimensional)
~ks thermal conductivity of the solid phase

(dimensional)

kf effective thermal conductivity of the fluid

phase, equals u~kf (dimensional)
~kf thermal conductivity of the fluid phase

(dimensional)

L the length of the porous slab (dimensional)

q heat flux vector (dimensional)

t
*

time (dimensional)

T temperature (dimensional)

TC coldest wall temperature (dimensional)

x
*

horizontal co-ordinate (dimensional)

x position vector, equals xêx þ yêy þ zêz

Greek symbols

ae effective thermal diffusivity, defined by Eq.

(5) (dimensional)

be effective property coefficient to the Dual-

Phase-Lagging bi-harmonic term, defined

in Eq. (5) (dimensional)

cs solid phase effective heat capacity, equals

(1�u)qscs (dimensional)

cf fluid phase effective heat capacity, equals

uqfcp,f (dimensional)

h dimensionless temperature, equals (T � TC)/

(TH � TC)

u porosity

qs solid phase density

qf fluid phase density

sq time lag associated with the heat flux, de-

fined by Eq. (5) (dimensional)

sT time lag associated with the temperature

gradient defined by Eq. (5) (dimensional)

xn dimensionless natural thermal frequency de-

fined by Eq. (26)

Subscripts

* corresponding to dimensional values of the

independent variables, except for cases

where there is no ambiguity, as listed in this

nomenclature

s related to the solid phase

f related to the fluid phase
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Kim and Jang [13], Rees [14], Alazmi and Vafai [15], and

Nield, Kuzentsov and Xiong [16]. While the significance

of practically obtaining the same temperature solution

for each phase in a porous medium subject to a Lack

of Local Thermal Equilibrium (La Lotheq) is discussed

by Vadasz [17] identifying conditions for which the tra-

ditional formulation of the La Lotheq model is not ade-

quate, the conditions used in the present paper are not

identical to those identified by Vadasz [17]. Other exam-

ples of conditions that are not affected by the conclu-

sions of the present paper are problems of convection

subject to La Lotheq such as those presented by Spiga

and Morini [18], Kuznetsov [19], Amiri and Vafai [20]

and Kuznetsov [21].

The present paper deals with Fourier heat conduc-

tion in a porous medium subject to La Lotheq. It aims

at demonstrating that the condition required for oscilla-

tory solutions, sT/sq < 1, is not physically attainable in a

porous slab conduction subject to a combination of an

imposed constant heat flux (Neumann) and constant
temperature (Dirichlet) boundary conditions. While

the results of the present paper may provide a useful

guidance among others to pulsed laser processing of

nanofilms (e.g. [22]), the problem presented here is essen-

tially distinct and deals with the application to porous

media. There are major distinctions as well as similari-

ties between the two. The similarities are linked to the

two-phase coupled equations used to represent the

‘‘absorption of photon energy by electrons and the heat-

ing of the lattice through electron–phonon coupling’’

[23]. The distinctions are mainly in the small scale of

the ultra fast heating of metals or thin films leading to

a legitimate use of a non-Fourier constitutive model to

represent the relationship between the heat flux and

the temperature gradient, such as the application of

the Dual-Phase-Lagging for each phase (Hays-Stang

and Haji-Sheikh [22]). In porous media due to the typi-

cal macroscopic scale of both phases the latter is not

applicable. In the present paper Fourier Law was

employed for the heat flux mechanism at each phase.
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Nevertheless the coupling between the phases in terms of

the heat conduction at the solid-fluid interface leads to a

formulation that is approximately equivalent to Dual-

Phase-Lagging. The latter is a result of the analysis

and not an imposed constitutive relationship.
2. Problem formulation

2.1. Governing equations for lack of local thermal

equilibrium

The heat conduction equations for the two phases

that compose an isotropic and homogeneous porous

medium are obtained as phase averages over a Repre-

sentative Elementary Volume (REV) following Fourier�s
Law in the form

cs
oT s

ot�
¼ ksr2

�T s � hðT s � T fÞ ð1Þ

cf
oT f

ot�
¼ kfr2

�T f þ hðT s � T fÞ ð2Þ

where cs = (1 � u)qscs and cf = uqfcp,f are the solid

phase and fluid phase effective heat capacities, respec-

tively, u is the porosity, ks and kf are the effective ther-

mal conductivities of the solid and fluid phases,

respectively, and h represents an integral heat transfer

coefficient for the heat conduction at the solid-fluid

interface within an REV, assumed to be independent

of time and anticipated to depend on the thermal con-

ductivities of both phases, on the porosity, on the heat

transfer surface area and on the tortuousity of the inter-

face between the solid and fluid phases [24,25]. In the

case of fluid flow the value of h will depend also on local

Reynolds and Prandtl numbers of the fluid as presented

by Alazmi and Vafai [15].

When the Local Thermal Equilibrium assumption is

not valid, conditions appropriate for the case when the

temperature difference between the two phases is not

small, the two equations (1) and (2) are to be solved

simultaneously. The diffusion terms in these equations

are a result of replacing the �$
*
Æqs and �$

*
Æqf terms

by using Fourier�s Law in the form qs = �ks$*
Ts and

qf = �kf$*
Tf to yield the Laplacian terms. The coupling

between the two equations can be resolved as presented

by Vadasz [1,17] leading to

cs
o

ot�
� ksr2

� þ h
� �

cf
o

ot�
� kfr2

� þ h
� �

� h2
� �

T i ¼ 0

8i ¼ s; f ð3Þ

where the index i can take the values s representing the

solid phase or f standing for the fluid phase. The explicit

form of Eq. (3) is obtained after dividing it by h(cs + cf)
in the form
sq
o2T i

ot2�
þ oT i

ot�
¼ ae r2

�T i þ sTr2
�

oT i

ot�

� �
� ber4

�T i

� �
8i ¼ s; f ð4Þ

where the following notation was used

sq ¼
cscf

h cs þ cfð Þ ; ae ¼
ks þ kfð Þ
cs þ cfð Þ ;

sT ¼ cskf þ cfksð Þ
h ks þ kfð Þ ; be ¼

kskf
h ks þ kfð Þ ð5Þ

In Eqs. (4) and (5) sq and sT are the heat flux and

temperature related time lags linked to the Dual-

Phase-Lagging (DuPhlag) to be discussed below, while

ae is the effective thermal diffusivity of the porous med-

ium. It may be observed from Eq. (5) that there is a dual

effect of the heat capacities on the effective parameters of

the uncoupled system in the sense that the heat flux time

lag sq is affected by the heat capacities of the solid and

fluid phases as thermal capacitors connected in series

following the relationship 1=cse ¼ 1=cs þ 1=cf ¼ ðcs þ
cfÞ=cscf , while the effective thermal diffusivity is affected

by the heat capacities of the solid and fluid phases as

thermal capacitors connected in parallel following the

relationship cpe ¼ ðcs þ cfÞ. In addition the parameter

be can be presented as the ratio between the effective

thermal conductivity due to the thermal resistances of

the solid and fluid phases connected in series and the

heat transfer coefficient h , in the form be = ke/h , where

ke = kskf/(ks + kf) and the thermal resistance of each

phase is defined as 1/ki "i = s, f.

2.2. Governing equations for Dual-Phase-Lagging heat

conduction

The Dual-Phase-Lagging model applied to porous

media conduction was introduced by Tzou [2] and its

solution was presented among others by Xu and Wang

[5]. In the Dual-Phase-Lagging model the following for-

mulation is suggested to replace the classical Fourier

Law [2]

qi x�; t� þ sqi
� �

¼ �kir�T i x�; t� þ sTið Þ 8i ¼ s; f ð6Þ

where the relationship between the heat flux and temper-

ature gradient is not instantaneous but rather affected by

two time lags, a heat flux lag sqi, and a temperature gra-

dient time lag, sTi. By expanding Eq. (6) in a Taylor ser-

ies in time and truncating the series at the first order

approximation it yields (see Vadasz [1], Tzou [2] for

details) to order O(sqi) and O(sTi)

qi þ sqi
qi
ot�

¼ �ki r�T i þ sTi
oðr�T iÞ
o; t�

� �
8i ¼ s; f ð7Þ

This Dual-Phase-Lagging formulation is applied to

the thermal conduction energy equation



Fig. 1. A fluid saturated porous slab subject to a combination

of constant temperature and constant heat flux conditions at

the walls.
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ci
oT i

ot�
þ r� � qi ¼ 0 8i ¼ s; f ð8Þ

by replacing the fluid-solid interface heat transfer term

with the Dual-Phase-Lagging formulation. Applying

now the ($
*
Æ) operator on Eq. (7), substituting $

*
Æqi =

�ci oTi/ot* from Eq. (8) and dividing the resulting equa-

tion by ci yields one equation for the temperature of

each phase due to Dual-Phase-Lagging in the form

sqi
o2T i

ot2�
þ oT i

ot�
¼ ai r2

�T i þ sTir2
�

oT i

ot�

� �� �
8i ¼ s; f ð9Þ

Eq. (9) is the conduction Dual-Phase-Lagging equa-

tion for each phase of a porous medium. Comparing

Eq. (9) with the uncoupled equations (4) obtained from

applying the Fourier Law to each phase, while including

the fluid-solid interface heat transfer term, shows that

they are equivalent provided the bi-harmonic term in

Eq.(4) is negligibly small, i.e. if be � 0, and provided

the following equivalency of parameters is enforced

sqi ¼ sq ¼
cscf

h cs þ cfð Þ ; ai ¼ ae ¼
ðks þ kfÞ
ðcs þ cfÞ

;

aesTi ¼
ðcskf þ cfksÞ
hðcs þ cfÞ

8i ¼ s; f ð10Þ

Therefore the consequent definition of the tempera-

ture gradient lag, sTi, that is consistent with Dual-

Phase-Lagging is

sTi ¼ sT ¼ ðcskf þ cfksÞ
hðks þ kfÞ

8i ¼ s; f ð11Þ

In the present paper Fourier law was invoked at all

stages and the approximate Dual-Phase-Lagging was

obtained as a result of the heat transfer interaction

between the phases, not imposed as a constitutive rela-

tionship instead of Fourier law.

A direct property of these parameters is by evaluating

the ratio sT/sq by using Eq. (5), which leads to the fol-

lowing result

sT
sq

¼ 1þ c2skf þ c2f ks
cscfðks þ kfÞ

> 1 ð12Þ

Since the combination of positive valued properties

in the second term of Eq. (12) is always positive, the time

lags ratio is always greater than 1, i.e. sT/sq > 1. The lat-

ter conclusion that is based on a physical argument and

it is accurately derived has a profound impact on the fol-

lowing results. It applies generally to Fourier heat con-

duction in porous media subject to La Lotheq and is

not restricted to any specific geometry nor boundary

conditions. Note that while each one of the time lags

sT and sq depend on the interface heat transfer coeffi-

cient h as observed in Eqs. (5), (10) and (11), their ratio

sT/sq in Eq. (12) is independent of this coefficient making

its evaluation simpler as it depends on the effective prop-
erties of each phase and is independent of the interaction

between the phases.
3. Analytical solution

The analysis of the Dual-Phase-Lagging model for

porous media conduction is undertaken for a particular

solution of Eq. (9) corresponding to the one dimensional

heat conduction in a porous slab of length L as pre-

sented in Fig. 1. The first major distinction between

the present problem pertaining to a combination of con-

stant temperature and constant heat flux imposed on the

boundaries and the problem presented by Vadasz [1]

that applied to constant temperatures imposed on both

boundaries is that the present problem does not allow

for identical temperature solutions for both solid and

fluid phases as long as the effective thermal conductivi-

ties of the phases are distinct [17]. Transforming Eq.

(4) into a dimensionless form by using L to scale the

independent length variable x
*
, i.e. x = x

*
/L, by using

L2/ae to scale the time, i.e. t = aet*/L
2, and introducing

the dimensionless temperature, hi,

hi ¼
ðT i � T CÞkf

qLL
8i ¼ s; f ð13Þ

where TC is the cold wall imposed temperature and the

heat flux at x
*
= L is represented in the form ðqÞx�¼L ¼

�qL ¼ const. < 0, defining the value of qL > 0, and lead-

ing to

Foq
o2hi
ot2

þ ohi
ot

¼ o2hi
ox2

þ FoT
o3hi
otox2

� Nb
o4hi
ox4

8i ¼ s; f ð14Þ
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where two Fourier numbers, Foq, FoT, and one addi-

tional dimensionless group are defined as

Foq ¼
aesq
L2

; FoT ¼ aesT
L2

; Nb ¼
be

L2
ð15Þ

The consistency between the Dual-Phase-Lagging

and the two-phase porous media equations require that

Nb � 1. Then, the bi-harmonic term in Eq. (14) is

neglected according to Tzou [2] leading to

Foq
o2hi
ot2

þ ohi
ot

¼ o2hi
ox2

þ FoT
o3hi
otox2

8i ¼ s; f ð16Þ

and their corresponding boundary and initial conditions

are

x ¼ 0 : hi ¼ 0 8i ¼ s; f ð17Þ

x ¼ 1 :
ohs
ox

� �
x¼1

¼ 1;
ohf
ox

� �
x¼1

¼ rk ð18Þ

where rk = kf/ks is the effective thermal conductivity

ratio.

t ¼ 0 : hi ¼ h0 ¼ const. and _hi ¼ _h0 ¼ const.

8i ¼ s; f ð19Þ

The solution to Eq. (16) is separated into steady state

hi,(ss) and transient hi,(tr) parts in the form h = hi,(ss) +
hi,(tr)"i = s,f. The steady state is represented by the lin-

ear solutions hf,(ss) = x and hs,(ss) = rkx, which satisfy

the boundary conditions Eqs. (17) and (18). The tran-

sient solutions hf,(tr) and hs,(tr) have to fulfil the equation

Foq
o
2hi;ðtrÞ
ot2

þ ohi;ðtrÞ
ot

¼ o
2hi;ðtrÞ
ox2

þ FoT
o
3hi;ðtrÞ
otox2

8i ¼ s; f

ð20Þ

and the following boundary and initial conditions

x ¼ 0 : hi;ðtrÞ ¼ 0 8i ¼ s; f ð21Þ

x ¼ 1 :
ohi;ðtrÞ
ox

� �
x¼1

¼ 0 8i ¼ s; f ð22Þ

t ¼ 0 : hf ;ðtrÞ ¼ ðh0 � xÞ;
hs;ðtrÞ ¼ ðh0 � rkxÞ and _hi;ðtrÞ ¼ _h0 8i ¼ s; f ð23Þ

The solution is obtained by separation of variables

in the form of two equations for each phase hi,(tr) =
/n(t)un(x), "i = s,f, where the functions /n(t) and un(x)

are identical for both phases because of the identical

boundary conditions (21) and (22). These equations are

d2/n

dt2
þ cn

d/n

dt
þ x2

n/n ¼ 0 ð24Þ

d2un
dx2

þ jnun ¼ 0 ð25Þ

The solution of Eq. (25) subject to the homogeneous

boundary conditions un = 0 at x = 0 and (dun/dx)x=1 = 0
at x = 1 is un = ansin(jnx) and the resulting eigenvalues

are jn = p/2 + np = (2n + 1)p/2 "n = 0,1,2,3, . . . The

coefficients cn and x2
n in Eq. (24) are defined in the form

cn ¼ Fo�1
q ð1þ j2

nFoT Þ;
x2

n ¼ Fo�1
q j2

n ¼ ð4FoqÞ�1ð2nþ 1Þ2p2 ð26Þ

Eq. (24) represents a linear damped oscillator. Its

eigenvalues are

k1n ¼ � cn
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

c2n

s" #
ð27Þ

k2n ¼ � cn
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

c2n

s" #
ð28Þ

The solution for /n is overdamped if for some values

of n the condition 4x2
n < c2n is satisfied, leading to

htr;n ¼ ðA1ne
k1nt þ A2ne

k2ntÞ sinðjnxÞ; ð29Þ

it is critically damped if for some values of n = ncr the

condition 4x2
ncr

¼ c2ncr is satisfied, i.e. k1n ¼ k2n ¼ kncr ¼
�cncr=2 leading to

htr;ncr ¼ ðA1ncr e
kncr t þ A2ncr te

kncr tÞ sinðjncrxÞ; ð30Þ

and it is underdamped if for some values of n the condi-

tion 4x2
n > c2n is satisfied, i.e. k1n = kr � iki and

k1n = kr + iki, where kr = �cn/2 and ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

n � c2n
p

=2,
leading to decaying thermal waves in the form

htr;n ¼ e�cnt A1n cosðkit � jnxÞ � cosðkit þ jnxÞ½ �f
�A2n½sinðkit � jnxÞ � sinðkit þ jnxÞ�g ð31Þ
4. Impossibility of oscillations and lack of resonance

The condition for an underdamped solution and its

associated oscillations is further explored to obtain

explicit criteria in terms of the primitive parameters of

the original system. By using the definitions from Eq.

(26) it produces the condition for an underdamped

(oscillatory) solution in the form

c2n
4x2

n

¼ ½4þ FoT ð2nþ 1Þ2p2�2

16Foqð2nþ 1Þ2p2
< 1 ð32Þ

An analysis of inequality (32) presented in Appendix

A produces the following necessary and sufficient condi-

tion for the underdamped solution to materialize

FoT
Foq

¼ sT
sq

< 1 ð33Þ

a condition that is identical to the one obtained when

Dirichlet boundary conditions were applied on both

walls [1]. However Eq. (12) shows that based on physical

arguments the time lag ratio sT/sq is always greater than
one, i.e. sT/sq > 1. Therefore, underdamped (oscillatory)
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solutions, which require according to Eq. (33) that

sT/sq < 1, are being ruled out. Similarly, since the condi-

tion for critically damped solutions is FoT/Foq = sT/
sq = 1, but in reality this ratio is greater than 1, i.e. sT/
sq > 1, critically damped solutions are ruled out as well.

One can therefore conclude that underdamped and crit-

ically damped solutions are not possible, and therefore

oscillations cannot occur in the Dual-Phase-Lagging

application to porous media conduction subject to the

specified geometry and boundary conditions. Resonance

could have been possible due to a forced periodic source

or alternatively due to periodic boundary conditions at a

forcing frequency that is identical to one of the natural

frequencies of the system. However the lack of possibil-

ity for underdamped solutions prevent resonance from

occurring in the Dual-Phase-Lagging application to por-

ous media conduction subject to the specified geometry

and boundary conditions.
5. Conclusions

The approximate equivalence between the Dual-

Phase-Lagging (DuPhlag) heat conduction model and

the Fourier heat conduction in porous media subject

to Lack of Local Thermal Equilibrium (La Lotheq) lead

to the expectation that thermal waves and resonance are

possible. It was demonstrated that the conditions neces-

sary for such thermal oscillations and possibly resonance

to materialize are not physically attainable in a porous

slab subject to a combination of Dirichlet and Neumann

boundary conditions.
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Fig. 2. Graphical representation of the conditions for under-

damped, critically damped and overdamped solutions in terms

of the function y(m2) = m4 + bm2 + c, for c > 0.
Appendix A

The condition for underdamped (oscillatory) solu-

tions to materialize was presented in Eq. (32) in the form

½4þ FoT ð2nþ 1Þ2p2�2

16Foqð2nþ 1Þ2p2
< 1 ðA:1Þ

By introducing the notation m = 2n + 1

"n = 0,1,2,3, . . ., or "m = 1,3,5,7, . . . one can expand

the inequality (A.1) to produce the following inequality

which applies to the values of m

y � m4 þ bm2 þ c < 0 ðA:2Þ

where

b ¼ 8ðFoT � 2FoqÞ
p2Fo2T

; c ¼ 16

p4Fo2T
> 0 ðA:3Þ

By treating m2 as a continuous variable, the function

y(m2) = m4 + bm2 + c represents a parabola which has a

minimum at m2 = (�b/2). For obtaining real and posi-

tive values of m the roots, m2, of the equation
y � m4 + bm2 + c = 0 have to be real and positive. The

plot of y(m2) as a function of m2 is presented in Fig. 2

identifying the cases where c > 0, while the cases when

c < 0 are not presented as they are not applicable here

according to Eq. (A.3). The two typical curves presented

in Fig. 2 correspond to b < 0 (FoT/Foq < 2) and b > 0

(FoT/Foq > 2). For b > 0 (FoT/Foq > 2) the negative part

of the curve corresponds to negative values of m2 and

therefore cannot accommodate real values of m. For

b < 0 (FoT/Foq < 2) an underdamped solution is in prin-

ciple possible provided the roots of the quadratic equa-

tion y � m4 + bm2 + c = 0 are real. The latter implies

that the following roots m2
1;2 ¼ �b½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4c=b2

q
�=2

have to be real for obtaining two real and positive values

of m2 as presented in Fig. 2. For the latter to occur the

discriminant (b2 � 4c) must be positive. By substituting

the parameters from Eq. (A.3) into this condition, it

yields

64

p4Fo2T

ðFoT � 2FoqÞ2

Fo2T
� 1

" #
> 0 ðA:4Þ

The only difference between this inequality and the

one obtained in the case of Dirichlet boundary condi-

tions for both walls is the value of the coefficient in front

of the brackets. Further derivation of the square brack-

ets in Eq. (A.4) accounting for positive values of Foq > 0

and FoT > 0 leads to

FoT
Foq

¼ sT
sq

< 1 ðA:5Þ

Inequality (A.5) represents a necessary and sufficient

condition for underdamped solutions to materialize.
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